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Problem Solving II: Experimental Methods

For more about the theory of uncertainty analysis, see this handout, or for a more introductory

take, this handout and this comic. For practical tips for real experiments, especially at the IPhO,

see chapter 7 of Physics Olympiad: Basic to Advanced Exercises. For some entertaining general

discussion, see chapters I-5 and I-6 of the Feynman lectures. There is a total of 81 points.

1 Basic Statistics

Idea 1

If a quantity X has the probability distribution p(x), that means

the probability that a ≤ X ≤ b is

∫ b

a
p(x) dx.

In particular, the total probability has to sum to one, so∫ ∞
−∞

p(x) dx = 1.

Using the probability distribution, we can calculate expectation values, i.e. averages. For

example, the expectation value of X, also called the mean, is

〈X〉 =

∫ ∞
−∞

xp(x) dx

while the expectation value of an arbitrary function of X is

〈f(X)〉 =

∫ ∞
−∞

f(x)p(x) dx.

One especially important quantity is the variance of X, defined as

varX = 〈X2〉 − 〈X〉2.

The standard deviation is defined by σX =
√

varX. It describes how “spread out” the

distribution of X is, and it will play an important role in uncertainty analysis.

[1] Problem 1. Suppose that x is a length. What are the dimensions of p(x), 〈X〉, varX, and σ?

Solution. Since p(x) dx is dimensionless, we have

[p(x)] = L−1

where L denotes length. Similarly,

[〈X〉] = L, [varX] = L2, [σX ] = L.
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Example 1

Trains arrive at a train station every 10 minutes. If I arrive at a random time, and X is the

number of minutes I have to wait, what is the standard deviation of X?

Solution

We see that X can be anywhere between 0 and 10, with all possibilities equally likely, so

p(x) =

{
1/10 min−1 0 ≤ x ≤ 10,

0 otherwise

where the 1/10 guarantees the total probability is 1. For the rest of this example, we’ll

suppress the units. We have

〈X〉 =

∫ ∞
−∞

xp(x) dx =

∫ 10

0

x

10
dx = 5

which makes sense, as I should have to wait half the maximum time on average, and

〈X2〉 =

∫ ∞
−∞

x2p(x) dx =

∫ 10

0

x2

10
dx =

100

3
.

Then the standard deviation is

σX =
√
〈X2〉 − 〈X〉2 =

5√
3

min.

[3] Problem 2. Consider an exponentially distributed quantity,

p(x) =

{
ae−ax x ≥ 0,

0 otherwise.

Verify that the total probability is 1, and compute the mean and standard deviation. To perform

the integrals, you will have to integrate by parts.

Solution. First, to check normalization,∫ ∞
−∞

p(x)dx =

∫ ∞
0

ae−axdx =

∫ ∞
0

e−udu = 1− 0 = 1.

Now, the mean can be evaluated using integration by parts,

〈x〉 =

∫ ∞
0

xae−ax dx = −xe−ax
∣∣∣∞
0

+

∫ ∞
0

e−ax dx = 0− 1

a
e−ax

∣∣∣∞
0

=
1

a
.

To calculate the standard deviation, we must evaluate

〈x2〉 =

∫ ∞
0

x2ae−axdx = 0 +

∫ ∞
0

(2x)e−axdx =
2

a
〈x〉 =

2

a2
.

We thus conclude

σX =
√
〈X2〉 − 〈X〉2 =

√
2

a2
− 1

a2
=

1

a
.
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[2] Problem 3. The purpose of subtracting 〈X〉2 in the variance is to make sure it doesn’t change

when a constant is added to x, since shifting something left or right on the number line shouldn’t

change its spread. Verify that for any constant c, varX = var(X + c).

Solution. We have

var(X + c) = 〈(X + c)2〉 − 〈X + c〉2.

By the definition of the expectation value, we have

〈A+B〉 = 〈A〉+ 〈B〉, 〈cA〉 = c〈A〉

for any quantities A and B and any constant c. Thus,

var(X + c) = 〈X2〉+ 〈2Xc〉+ 〈c2〉 − 〈X〉2 − 2〈X〉〈c〉 − 〈c〉2 = varX

as desired.

[3] Problem 4. We say X is normally distributed if

p(x) ∝ e−a(x−b)2 .

For simplicity, let’s shift X so that it’s centered about x = 0, so

p(x) ∝ e−ax2 .

You may use the result given in P1, ∫ ∞
−∞

e−x
2
dx =

√
π.

Find the constant of proportionality in p(x), the mean, and the standard deviation.

Solution. Let p(x) = ke−ax
2
. We fix the constant k by demanding normalization,∫ ∞
−∞

ke−ax
2
dx =

∫ ∞
−∞

k√
a
e−u

2
du = 1.

Using the provided integral, we conclude

k =

√
a

π
.

The mean is clearly zero, since the distribution is symmetric about that point. Thus, we have

varX = 〈X2〉 =

√
a

π

∫ ∞
−∞

x2e−ax
2
dx =

1

a
√
π

∫ ∞
−∞

u2e−u
2
du.

This remaining integral can be evaluated using integration by parts,∫
u2e−u

2
du = −1

2
ue−u

2
∣∣∣∞
−∞

+
1

2

∫
e−u

2
du = 0 +

√
π

2

from which we conclude

varX =
1

a
√
π

√
π

2
, σ =

1√
2a
.
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[2] Problem 5. If two random variables X1 and X2 are independent, then

〈X1X2〉 = 〈X1〉〈X2〉.

Use this result to show that

var(X1 +X2) = var(X1) + var(X2)

which implies that the standard deviation “adds in quadrature”,

σX1+X2 =
√
σ2X1

+ σ2X2
.

This is an important result we’ll use many times below.

Solution. By definition, we have

var(X1 +X2) = 〈(X1 +X2)
2〉 − 〈X1 +X2〉2

Using the properties listed in problem 3,

var(X1 +X2) = 〈X2
1 〉+ 2〈X1X2〉+ 〈X2〉2 − 〈X1〉2 − 2〈X1〉〈X2〉 − 〈X2〉2

= var(X1) + var(X2) + 2(〈X1X2〉 − 〈X1〉〈X2〉)

When X1 and X2 are independent, the last term vanishes, giving

var(X1 +X2) = var(X1) + var(X2).

2 Uncertainty Analysis

Idea 2

When a physical quantity is measured in an experiment and reported as x±∆x, it is uncertain

what the true value of the quantity is. If the quantity has a probability distribution p(x),

then the reported uncertainty ∆x is essentially the standard deviation of p(x).

Remark

In practice, you’ll have to use intuition and experience to assign uncertainties for real mea-

surements. For example, if you’re using a clock that times only to the nearest second, you

might take ∆t = 0.5 s. If you’re using a good ruler, which has millimeter markings, you might

take ∆x = 0.5 mm, though you can actually do a bit better if you look carefully. Of course,

the ultimate test is the results: if you assigned the uncertainties right, your final uncertainty

should encompass the true result most (but not all) of the time.

[2] Problem 6. Suppose x has uncertainty ∆x and y has uncertainty ∆y, where x and y are indepen-

dent. Explain why the uncertainty of x+ y is

∆(x+ y) =
√

(∆x)2 + (∆y)2.

This is called “addition in quadrature”. What is the uncertainty of x− y? How about x+ x?
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Solution. For independent variables, var(X1 +X2) = var(X1) + var(X2). Since our uncertainties

represent the standard deviation, σX =
√

var(X), we have

∆(x+ y) =
√

(∆x)2 + (∆y)2.

For x− y = x+ (−y), and ∆(−y) = ∆y, we get that ∆(x− y) = ∆(x+ y). Finally, by linearity we

clearly have ∆(x+ x) = 2∆x. (The formula above doesn’t apply, because x isn’t independent of x.)

Remark

Note how this differs from “high school” uncertainty analysis. In school, you might be told

to show uncertainty using significant figures, and when adding two things, to keep only the

figures that are significant in both of them. That corresponds to

∆(x+ y) = max(∆x,∆y)

which is an underestimate. Or, you might be told that the uncertainty needs to encapsulate

all the possible values, which implies that

∆(x+ y) = ∆x+ ∆y

which is an overestimate, since the uncertainties could cancel.

Example 2: F = ma 2016 25

Three students make measurements of the length of a 1.50 m rod. Each student reports an

uncertainty estimate representing an independent random error applicable to the measure-

ment.

• Alice performs a single measurement using a 2.0 m tape measure, to within 2 mm.

• Bob performs two measurements using a wooden meter stick, each to within 2 mm, which

he adds together.

• Christina performs two measurements using a machinist’s meter rule, each to within

1 mm, which she adds together.

Rank the measurements in order of their uncertainty.

Solution

The uncertainty in Alice’s measurement is 2 mm. The uncertainty in Bob’s is 2
√

2 mm by

quadrature, while the uncertainty in Christina’s is
√

2 mm by quadrature. So the lowest

uncertainty is Christina’s, followed by Alice’s, followed by Bob’s.

[2] Problem 7. Given N independent measurements of the same quantity with the same uncertainty,

xi ±∆x, find the uncertainty of their sum. Hence show the uncertainty of their average is ∆x/
√
N .

This result is extremely important, since repeating trials is one of the main ways to reduce

uncertainty. But it’s important to remember that the results derived above hold only for independent
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measurements. For example, taking a single measurement, then averaging that single number with

itself 100 times certainly wouldn’t reduce the uncertainty at all!

Solution. The uncertainty of their sum ∆X can be found by adding in quadrature,

∆X2 =
∑
i

∆x2 = N∆x2

which implies ∆X = ∆x/
√
N .

Idea 3

If x has uncertainty ∆x, and f(x) can be approximated by its tangent line, f(x′) ≈ f(x) +

(x′ − x)f ′(x) within the region x±∆x, then f(x) has approximate uncertainty f ′(x) ∆x.

[2] Problem 8. If x has uncertainty ∆x, find the uncertainties of x2,
√
x, 1/x, 1/x4, log x, and ex.

Solution. Differentiate the functions and multiply by ∆x to find the uncertainties. The sign isn’t

important, since uncertainties are always positive. The results are:

∆(x2) = 2x∆x ∆(
√
x) =

∆x

2
√
x

∆(1/x) =
∆x

x2

∆(1/x4) =
4∆x

x5
∆(log(x)) =

∆x

x
∆(ex) = ex∆x

[2] Problem 9. The tangent line approximation doesn’t always make sense. For example, suppose that

x is measured to be zero, up to uncertainty ∆x. Show that the above results for the uncertainties

of x2 and
√
x give nonsensical results. What would be a more reasonable uncertainty to report?

Solution. The above uncertainties give 0, ∞ for the uncertainties of x2 and
√
x respectively. Since

the uncertainties were found with ∆x � x, now with x � ∆x, we can get (x + ∆x)2 − x2 =

2x∆x + ∆x2 ≈ ∆x2 and
√
x+ ∆x −

√
x ≈
√

∆x. Thus, more reasonable uncertainties are (∆x)2

and
√

∆x. There are numerical factors of order 1 because the shapes of the probability distributions

will be distorted, but we won’t worry about those, because we’re just looking to get a reasonable

result. (Of course, a professional would keep track of all these details.)

[2] Problem 10. Consider two quantities with independent uncertainties, x±∆x and y ±∆y.

(a) Show that the uncertainty of xy is

∆(xy) = xy

√(
∆x

x

)2

+

(
∆y

y

)2

.

To do this, start by writing xy as exp(log x+ log y).

(b) If we set x = y, then we find

∆(x2) = x2

√
2

(
∆x

x

)2

=
√

2x∆x.

On the other hand, in a previous problem we found ∆(x2) = 2x∆x. Which result is correct?
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(c) Find the uncertainty of x/y.

Solution. (a) We can write

xy = exp(log x+ log y)

which implies

∆(xy) = exp(log x+ log y)∆(log x+ log y) = xy

√(
∆x

x

)2

+

(
∆y

y

)2

.

(b) The result that ∆(x2) = 2x∆x is correct, since the formula for ∆(xy) assumes x, y are

independent, which fails when we set y = x.

(c) We have
x

y
= exp(log x− log y)

and by a very similar calculation to part (a), we conclude

∆(x/y) =
x

y

√(
∆x

x

)2

+

(
∆y

y

)2

.

[2] Problem 11. A student launches a projectile with speed v = 5± 0.1 m/s in gravitational accelera-

tion g = 9.81± 0.01 m/s2. The resulting range is d = 1.5± 0.02 m. Given that the launch angle was

less than 45◦, find the launch angle, with uncertainty, assuming all uncertainties are independent.

Solution. From the projectile range equation d = v2 sin(2θ)/g, we get

θ =
1

2
arcsin

(
dg

v2

)
= 18.03◦.

To find the uncertainty, we write sin(2θ) = gd/v2. The left-hand side is

2 cos(2θ)∆θ

by the tangent line approximation. By the result of problem 10, the right-hand side is

dg

v2

√(
∆d

d

)2

+

(
∆g

g

)2

+

(
2∆v

v

)2

= 0.0248

Combining the results, we have

∆θ = 0.015 rad = 0.9◦

which means the final result should be written as

θ = 18.0◦ ± 0.9◦

where we removed a superfluous significant figure.

[2] Problem 12. Two physical quantities are related by y = xex.

(a) If x is measured to be 1.0± 0.1, find the resulting value of y, with uncertainty.

7
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(b) If y is measured to be 2.0± 0.1, find the resulting value of x, with uncertainty.

Solution. (a) To find the central value of y, we plug in to get y = e = 2.7183. To find the error,

we use the tangent line approximation,

dy

dx
= ex(x+ 1)

which gives us

∆y ≈ ex(x+ 1)∆x = 0.54.

Thus, rounding to a reasonable number of significant figures, we have

y = 2.7± 0.5.

Note that it would be incorrect to apply the “addition in quadrature” rule for products,

∆y = xex

√(
∆x

x

)2

+

(
∆(ex)

ex

)2

because x and ex aren’t independent.

(b) To find the central value of x, we solve the equation 2 = xe−x numerically. This can be done

using the method of iteration introduced in P1. That is, we have x = 2e−x, so by repeatedly

plugging 2e−Ans into the calculator, we get x = 0.8526.

Under the tangent line approximation,

∆x ≈ ∆y

ex(x+ 1)
= 0.023.

Rounding to a reasonable number of significant figures, we conclude

x = 0.85± 0.02.

Idea 4

For practical computations, it is often useful to use relative uncertainties. The relative

uncertainty of x is ∆x/x, and can be expressed as a percentage.

[1] Problem 13. Some basic relative uncertainty results.

(a) Show that the relative uncertainty of the product or quotient of two quantities with independent

uncertainties is the square root of the sum of the squares of their relative uncertainties.

(b) Show that averaging N independent trials as in problem 7 reduces the relative uncertainty by

a factor of
√
N .

Solution. (a) Above we found that

∆(xy) = xy

√(
∆x

x

)2

+

(
∆y

y

)2

8
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Dividing both sides by xy gives

∆(xy)

xy
=

√(
∆x

x

)2

+

(
∆y

y

)2

which is the desired result.

(b) We have ∆xN = ∆(Σx)/N = ∆x
√
N/N = ∆x/

√
N . Then

∆xN
x

=
∆x

x

1√
N

as expected.

Example 3: F = ma 2022 B21

Amora and Bronko are given a long, thin rectangle of sheet metal. (It has been machined very

precisely, so they can assume it is perfectly rectangular.) Using calipers, Amora measures

the width of the rectangle as 1 cm with 1% uncertainty. Using a tape measure, Bronko

independently measures its length as 100 cm with 0.1% uncertainty. What are the relative

uncertainties they should report for the area and the perimeter of the rectangle?

Solution

To compute the area, we multiply the two measurements, which means we add the relative

uncertainties in quadrature,

∆A

A
=
√

(1%)2 + (0.1%)2 ≈ 1%.

Note that in this case, the relative uncertainty of Bronko’s measurement is negligible; the rel-

ative uncertainty of the area is approximately the relative uncertainty of Alice’s measurement.

Computing the perimeter involves adding the measurements, which means the absolute

uncertainties are added in quadrature instead. These are 0.01 cm and 0.01 cm for Alice and

Bronko’s measurements, respectively, so the absolute uncertainty of Alice’s measurement

is negligible. Thus, the relative uncertainty of the perimeter is approximately the relative

uncertainty of Bronko’s measurement, 0.1%.

In simple Olympiad experiments, often only one uncertainty will really matter. This can

dramatically simplify calculations, but it might take a little thought to tell which one.

[3] Problem 14. �̂10 Solve F = ma 2018 problems A12, A25, B19, and B25, and F = ma 2019

problems A16, B18, and B25. Make sure to strictly adhere to the total time. Since these are

F = ma problems, you don’t have to produce a writeup. If you find these questions difficult to

finish in the allotted time, go back and review the earlier material!

[2] Problem 15. Suppose the goal of an experiment is to measure the ratio T1/T2 of the durations of

two physical processes, where T1 is about 15 seconds, and T2 is about 3 seconds. Also suppose your

stopwatch is only accurate to the nearest second. You have two minutes to perform measurements.

Assume each measurement is independent.

9
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(a) Using your instinct, figure out whether it’s better to spend more total time measuring T1,

more total time measuring T2, or an equal amount of time on both.

(b) To confirm this, qualitatively sketch the relative uncertainty of T1/T2 as a function of the

fraction of time x spent measuring T1, using explicit numeric examples if necessary.

Calculations of this sort are common when doing Olympiad experimental physics. You should be

able to do them instinctively, getting the ballpark right answer without explicit calculation.

Solution. (a) Since T2 is smaller, a single measurement of T2 has a much higher relative error.

Furthermore, T2 takes less time to measure. This means we definitely want more distinct

measurements of T2 than of T1. As for how we split up the time, this is a bit harder to judge,

but intuitively because error adds in quadrature, taking a single measurement of each makes

T2’s uncertainty not 5 times as bad, but 25 times as bad. So T2 really completely dominates

the error here, and we should spent most of our time getting its error down.

(b) We have ∆T ≈ 1 s and ∆Ti = ∆T/
√
Ni, giving

∆(T1/T2) =
T1
T2

√(
∆T

T1
√
N1

)2

+

(
∆T

T2
√
N2

)2

The total time is constant, N1T1 +N2T2 = Tt where N1T1/Tt = x. We want to minimize

f(x) =
1

T 2
1 x

+
1

(1− x)T 2
2

.

The derivative is

f ′(x) = − 1

T 2
1 x

2
+

1

T 2
2 (q − x)2

and setting this to zero gives

x2(1− T 2
1 /T

2
2 )− 2x+ 1 = 0.

The smaller root is the desired one since x < 1, giving

x =
1− (T1/T2)

1− (T 2
1 /T

2
2 )

=
1

1 + (T1/T2)

so we should spend 1/6 of our time measuring T1. The graph of the uncertainty as a function

of x looks like a U shape due to the two asymptotes at x = 0 and x = 1.

[3] Problem 16. In the preliminary problem set, you measured g using a pendulum. If you didn’t do

uncertainty analysis for it, as we covered above, then you should go back and estimate uncertainties

more precisely. In this problem you’ll do a different experiment: you will estimate g by finding the

time needed for an object to roll down a ramp, with everything again made of household materials.

(a) Before starting, think about what the dominant sources of uncertainty will be, and how you

can design the experiment to minimize them. In particular, do you think the result will be

more or less precise than your pendulum experiment?

(b) Perform the experiment, taking at least ten independent measurements, and report the data

and results with uncertainty.
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Solution. Our formula for g is

g =
2`(1 + β)

t2 sin(θ)

where β = I/MR2 of the rolling object, and `, t are the distance and time for the path. Thus,

∆g = g

√(
2∆t

t

)2

+

(
∆`

`

)2

+

(
cos(θ)∆θ

sin(θ)

)2

.

To prevent slipping and to make t smaller, θ should be small for gentle rolling so tan θ ≈ θ. We

can estimate ∆θ ≈ 1◦, θ around 5-10◦, ∆t ≈ 0.1 s, t from 2-10 seconds, ∆` ≈ 1 mm, ` around 1

meter, and if we find a nice enough object ∆β ≈ 0. We can see that most of the error will probably

come from angle and time. Increasing angle will decrease time, and increasing time will need the

angle to decrease given the same length of ramp/rolling object available. To minimize these errors,

repeated measurements should be made with varying angles and recorded times.

The pendulum would probably have less error, since ∆t will be about the same and many

consecutive periods can be taken (resulting in ∆t ∼ 0.1s/N) if the pendulum isn’t damped by a lot,

and the ∆θ term won’t exist (however the length will be much shorter).

[3] Problem 17. At any moment, a Geiger counter can click, indicating that it has detected a particle

of radiation. Suppose that there is an independent probability αdt of clicking at each infinitesimal

time interval dt. Let the number of clicks observed in a total time T be X.

(a) Find the expected value and standard deviation of X, and thereby compute its relative

uncertainty. (Hint: split the total time into many tiny time intervals, and let Xi be the

number of clicks in interval i, so X =
∑

iXi.)

(b) Using a Geiger counter on a sample, you hear 197 clicks in 5 minutes of operation. Estimate

the activity α of the sample (i.e. the expected clicks per second), with uncertainty. If you

measure for longer, how does the uncertainty reduce over time?

(c) Now suppose that for a different sample, N = 0 after 5 minutes. Estimate the activity α of

the sample (i.e. the expected clicks per second), with a reasonable uncertainty. If you measure

for longer, and continue to hear no clicks, how does the uncertainty reduce over time?

Solution. (a) There are N = T/dt time intervals. Using the hint and applying linearity of

expectation,

〈X〉 =
∑
i

〈Xi〉 = N(αdt) = αT.

Since the Xi are independent, their variances add. The variance of Xi is

〈X2
i 〉 − 〈Xi〉2 = αdt− (αdt)2 = αdt.

Thus, by adding the variances, we have

varX = αT

so the standard deviation is ∆X =
√
αT . The relative uncertainty is ∆X/〈X〉 = 1/

√
αT .
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(b) Applying the formulas above, we estimate

α =
197

T
= 0.66 s−1

with an uncertainty of

∆α =
α√
αT

=

√
α

T
= 0.05 s−1.

The uncertainty falls as 1/
√
T . Note that this is very similar to previous results we’ve found,

where the uncertainty falls as 1/
√
n where n is the number of trials. In some sense, each

instant of time we wait is another trial here.

(c) Of course, we estimate α = 0, but then the formulas above imply ∆α = 0 and hence that we

are absolutely certain α = 0, which is absurd. (If you don’t think that’s absurd, note that

the same result would have occurred if we had heard zero clicks in an arbitrarily short time

interval, such as a nanosecond.)

This is a case where the basic rules of error propagation break down, and we need to think.

The point of giving an uncertainty is to indicate the range of parameter values compatible

with the data we observed. Now, the probability of having no clicks in time T is e−αT . If

αT � 1, then it would be very unlikely to have no clicks, so we can rule out α� 1/T . But

if αT . 1, this isn’t unlikely at all. Thus, your uncertainty window should be α ∈ [0, c/T ]

where c is an order-one number, whose value depends on the specific statistical procedure you

use. (Note that the upper bound falls as 1/T , not 1/
√
T .)

Remark

In this problem set, we have given rules for calculating the mean and standard deviation

of derived quantities. But in general, probability distributions can have all kinds of weird

features, which aren’t captured by those two numbers. The reason we focus on them anyway

is because of the central limit theorem, which roughly states that if we have many independent

random variables, the distribution of the sum will approach a normal distribution. As you

saw in problem 4, normal distributions are characterized entirely by their mean and standard

deviation, so we don’t lose any information by reporting only those two quantities.

[4] Problem 18. [A] This problem extends problem 17 to derive some canonical results.

(a) Let λ = αT . Find the probability p(X = k) of hearing exactly k clicks in terms of λ and k.

(b) To check your result, show that the sum of the p(X = k) is equal to one.

(c) ? In the limit λ � 1, show that the probabilities p(X = k) approach that of a normal

distribution with the mean and standard deviation calculated in problem 17, thereby providing

an example of the central limit theorem at work. This is a rather involved calculation, which

will use many of the techniques from P1. It will also require Stirling’s approximation,

n! ≈
√

2πn
(n
e

)n
for n� 1, which will be important in T2. (Hint: because the relative uncertainty falls as λ

increases, start by writing k = λ(1 + δ) for |δ| � 1, and expand in powers of δ. Be careful not

to drop too many terms, as δ is small, but λδ isn’t.)
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Solution. (a) Following the notation of problem 17, we have X =
∑

iXi, and we get k clicks if

precisely k of the Xi are equal to 1. Thus,

p(X = k) =

(
N

k

)
(αdt)k (1− αdt)N−k ≈ Nk

k!
(αdt)k (1− αdt)N =

λk

k!
e−λ.

This is known as the Poisson distribution.

(b) This follows from the Taylor series of the exponential,

∞∑
k=0

p(X = k) = e−λ
∞∑
k=0

λk

k!
= 1.

(c) Using Stirling’s approximation, we have

p(X = k) =
1√
2πk

(
λe

k

)k
e−λ

=
1√

2πλ(1 + δ)

(
e

1 + δ

)λ(1+δ)
e−λ

≈ 1√
2πλ

eδλ(1 + δ)−λ(1+δ)

where we used the fact that δ � 1.

Now we need to use a technique from P1. Letting the final term be equal to 1/y, we have

log y = λ(1 + δ) log(1 + δ) = λ(1 + δ)

(
δ − δ2

2
+O(δ3)

)
= δλ+

δ2λ

2
+O(δ3λ).

In P1, we only expanded up to the first term, but here we need to keep the order δ2 term.

The reason is we want an approximation that works for the whole peak of the probability

distribution, and we know it has relative uncertainty 1/
√
λ, which means we need to take

δ ∼ 1/
√
λ. That implies that δ2λ is of order one and cannot be dropped, but δ3λ is small and

can be dropped. Anyway, plugging this in, we find

p(X = k) ≈ 1√
2πλ

e−δ
2λ/2 =

1√
2πλ

e−(k−λ)
2/2λ

which is precisely a normal distribution with the appropriate mean and standard deviation.

[3] Problem 19. [A] ConsiderN independent measurements of the same quantity, with results xi±∆xi.

They can be combined into a single result by taking a weighted average. What is the optimal weighted

average, which minimizes the uncertainty?

Solution. Let the weights be wi, so we report the value

x =
∑
i

wixi.

The uncertainty obeys

(∆x)2 =
∑
i

w2
i (∆xi)

2.

13
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A tempting but incorrect way to minimize this quantity to set the derivative with respect to wi
equal to zero. This doesn’t work because the solution is just w1 = . . . = wN = 0, which isn’t a

weighted average at all. To actually have a weighted average, we need the weights to sum to one,∑
i

wi = 1.

This is an optimization problem with a constraint, which can be solved with Lagrange multipliers.

However, for this particular problem, the constraint is simple enough to handle manually. Because

of the constraint, if one increases some weight, then one must decrease others. At the minimum,

the effect of increasing any weight infinitesimally and decreasing another the same amount must be

zero, as if it weren’t, we could just adjust those two weights to get a lower uncertainty. Setting the

change in the uncertainty due to adjusting wi and wj in this way to zero gives

0 = d(w2
i )(∆xi)

2 + d(w2
j )(∆xj)

2 = (2 dw)(−wi(∆xi)2 + wj(∆xj)
2).

This tells us that wi ∝ 1/∆x2i , which means

wi =
1/(∆xi)

2∑
j 1/(∆xj)2

.

Note that all measurements are included in the optimal average, no matter how bad they may be.

Remark

There are many situations where the rules above can’t be used. For example, consider the

uncertainty of x+y2/x, where x and y have independent uncertainties. You can calculate the

uncertainty of either term with the standard rules, but you can’t calculate the uncertainty

of their sum, because the terms are not independent (both contain x).

In these cases, you can use the multivariable equivalent of the tangent line approximation,

f(x′, y′) ≈ f(x, y) + (x′ − x)
∂f

∂x
+ (y′ − y)

∂f

∂y
.

Adding the two contributions to the uncertainty in quadrature gives

∆f =

√(
∂f

∂x
∆x

)2

+

(
∂f

∂y
∆y

)2

.

This is the general rule that includes the rules you derived above as special cases. However, it

shouldn’t be necessary in Olympiad problems. For example, if you run into such situations in

an experiment, often one of the uncertainties is much smaller, and can be neglected entirely.

Remark

As you saw in problem 9, the tangent line approximation can sometimes fail. The proper way

to handle situations like these would be to find the full probability distribution of the desired

quantity, rather than just describing it crudely with its standard deviation. However, this
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can’t be done analytically except in the simplest of cases. So when professional physicists run

into situations like these, which are quite common, they often just numerically compute a few

million or billion values, starting with randomly drawn inputs each time, and use that to infer

the probability distribution. This technique is called Monte Carlo. It’s very powerful, but

certainly not needed for Olympiads! On Olympiads, you should just fall back to something

reasonable, such as taking the minimum and maximum possible values.

3 Data Analysis

Idea 5

All graphical data analysis for the USAPhO and IPhO can be performed by drawing a line

and measuring its slope and intercept. This is a bit artificial, but it’s necessary because of

the limited calculation equipment you have during these exams. Despite this, drawing lines

can be surprisingly powerful.

Example 4

The activity of a radioactive substance obeys A(t) = A0e
−t/τ . Using measurements of t and

A(t), plot a line to find A0 and τ .

Solution

To handle exponential relationships, take the logarithm of both sides for

logA(t) = logA0 − t/τ.

Then a plot of logA(t) vs. t has slope −1/τ and y-intercept logA0.

[1] Problem 20. For a power law y = αxn where y and x are measured, what line can be plotted to

find α and n?

Solution. We have

log(y) = log(αxn) = log(α) + n log(x).

Thus, if we plot log y against log x, the slope will be n and the y-intercept will be log(α).

[2] Problem 21. The rate R of electron emission from a solid in an electric field E is

R = βe−E/E0

for some constants β and E0. The particular form is because the effect is due to quantum tunneling,

and you will derive it in X2.

(a) If E and R are measured, what line can be plotted to find β and E0?

15
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(b) Your answer for part (a) should have formally incorrect dimensions, by the standards of P1.

This often happens when one takes logarithms. What’s going on? If the dimensions are wrong,

how can the result be right?

(c) Suppose both β and E0 have 1% uncertainty. For small E, which is more important for the

uncertainty of R? What about for large E? Around where is the crossover point?

Solution. (a) Take the natural log of the equation to get

logR = − E

E0
+ log β.

Plotting E on the x-axis and logR on the y-axis will give a line with slope − 1
E0

and y-intercept

log β.

(b) This gets into the details of what it even means to plot data. As a simpler case, consider the

relationship y = kx where y and x both have units of energy. We can plot y versus x to find

the slope k, but in reality, you can’t actually plot a dimensionful quantity: what would it

even mean to move your pencil a distance of “3.7 J” on a page? Instead, we write y and x as

dimensionless multiples of a standard unit of energy. That is, we are actually plotting

y

E0
= k

x

E0

where E0 is some unit of energy, which is typically 1 J. But we don’t bother to write E0

explicitly because this step is kind of obvious.

Exactly the same thing is going on in this problem, but it looks strange because logarithms

have the property log(xy) = log x+ log y. Both R and β have units of rate, so define a unit

of rate R0 and subtract logR0 from both sides to get an equation with correct dimensions,

log
R

R0
= − E

E0
+ log

β

R0
.

This reflects what we actually do when constructing a log plot, though it is usually left implicit.

(c) The uncertainty in β alone always gives a 1% uncertainty in R. But the uncertainty in R

due to the uncertainty in E0 depends on the value of E. For E � E0, we can expand the

exponential as (1− E/E0), and in this case the uncertainty in E0 does almost nothing at all,

so the uncertainty in β dominates. For E � E0, the reverse is true. By dimensional analysis,

the crossover must be around E ∼ E0.

Example 5

Suppose that y and x are related nonlinearly, as

y = bx+ ax2.

For example, this could model the force due to a non-Hookean spring. Using measurements

of x and y, plot a line to find a and b.
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Solution

If we divide by x, we find
y

x
= ax+ b.

Therefore, we can plot y/x versus x, which gives a line with slope a and intercept b. More

generally, we can plot a line whenever we can rearrange a given relation into the form

(known) = (unknown)(known) + (unknown)

where all four terms can be arbitrarily complicated. In this way, it is possible to turn a lot

of very nonlinear relations into lines.

[3] Problem 22. Some more examples of finding lines to plot.

(a) Suppose that you are given points (x, y) that lie on a circle centered at (a, 0) with radius r.

What line can be plotted to find a and r?

(b) Consider an Atwood’s machine with masses m and M > m. The acceleration of the machine

is measured as a function of M . However, since the pulley has mass, it slows the acceleration

of the Atwood’s machine, so that

a =
M −m

M +m+ δm
g.

Find a line that can be plotted to find g and δm, assuming m, M , and a are known. This is

an example of how plotting a line can separate out a systematic error, i.e. the value of δm,

which would be impossible if only one value of M were used.

(c) Suppose an object is undergoing simple harmonic motion with amplitude A and angular

frequency ω. Given measurements of the position x and velocity v, what line can be plotted

to find A and ω?

Solution. (a) The equation of the circle is

(x− a)2 + y2 = r2, y2 + x2 = 2ax+ r2 − a2

Plotting y2 + x2 vs. x will give a slope of 2a and a y-intercept of r2 − a2. Combining the two

pieces of information yields a and r.

(b) The equation can be slightly rearranged to give

M −m
a

=
M +m

g
+
δm

g
.

Therefore, a plot of (M −m)/a vs. M +m has slope 1/g and y-intercept δm/g.

(c) By conservation of energy, A2 = x2 + v2/ω2, so

x2 = A2 − v2/ω2.

Thus, a plot of x2 vs. v2 has y-intercept A2 and slope −1/ω2.
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Remark

When performing data analysis in practice, you should neatly organize your work. Always

make a data table that explicitly shows what you’re calculating, and make a neat graph with

a ruler and graph paper. Set the axis scale so that the graphed data points cover almost

the entire page, and let the x-axis include x = 0 if you need to find a y-intercept. The

computation of the slope should be explicitly shown. For each line you should use at least

about five points; you don’t have to use them all. If you have a calculator that can find best-fit

slopes for you, don’t use it, as these features are generally not allowed on real Olympiads.

[3] Problem 23. �W10 USAPhO 2012, problem A2. (This one requires basic thermodynamics.)

[3] Problem 24. �W10 USAPhO 2011, problem A2.

[3] Problem 25. �c10 INPhO 2018, problem 7. (This one requires basic fluid dynamics.)

Solution. See the official solutions here.

Idea 6

Historically, uncertainty analysis has only appeared on the F = ma, and data analysis has

only appeared on the USAPhO, but the two appear together in the IPhO.

To perform uncertainty analysis for best fit lines, plot the uncertainties of the data points

as error bars. Then draw the steepest and shallowest lines that still pass through most of

the error bars. These will give you the bounds on your slope and intercept. We’ll see some

examples of this procedure in later problem sets. It isn’t the most mathematically rigorous

method, but it gives decent results.

4 Estimation

Estimation is a useful skill for checking the answers to real-world problems.

Example 6

Estimate the circumference of the Earth.

Solution

If you know that the United States is 3,000 miles wide, and there is a time zone difference of

three hours between California and New York, then a reasonable estimate is 24,000 miles.

Or, if you know the factoid that light can go about seven times around the Earth in a second,

then a reasonable estimate is (3/7)× 108 m ≈ 4× 107 m.

Let’s check these results are compatible. There are about 5 miles in 8 kilometers, a fact

you can get by remembering how your car’s speedometer looks, or by noting that 3 feet are
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about 1 meter. Then 4× 104 km ≈ (5/8)× 4× 104 mi = 2.5× 104 mi, so the two results are

compatible. There are probably at least a hundred more ways to perform this estimation.

Example 7

Estimate the density of air, and compare this to the density of water.

Solution

We can directly use the ideal gas law, PV = nRT . The density is ρ = µn/V where µ is the

mass of one mole of air, so

ρ =
µP

RT
.

Atmospheric pressure is about 105 Pa, typical temperatures are about 300 K, and air is mostly

N2, which has a molar mass of µ = 28 g/mol, so

ρ =
(0.028)(105)

(8.3)(300)

kg

m3
≈ 1

kg

m3
.

The density of water is, almost by definition,

ρw ≈ 103
kg

m3
.

Most liquids and solids have densities within an order of magnitude of this, since in all

cases the atoms are packed close together. Evidently, air molecules are about a factor of

(103)1/3 = 10 times further apart than typical water molecules.

Example 8

Estimate how much useful power you can produce in a short burst.

Solution

This is a bit tricky to test, because most exercises just burn energy against air resistance or

friction, which is hard to estimate. However, a task that directly performs work is useful. I

weigh about 75 kg and can run up a 3 m high staircase in around 3 s, so

P = mgv = (75)(10)(3/3) W ≈ 750 W.

This is a typical max power output, while typical steady state power outputs are about a

factor of 3 or 4 smaller.

For the below questions, feel free to look up specific numbers if you’re stuck. In all cases, an answer

to the nearest order of magnitude is good enough.

[3] Problem 26. Some questions about light energy.
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(a) Estimate the number of photons emitted per second by a standard light bulb. (The energy of

a photon is E = hf , and the frequency of a photon is related to the wavelength by c = fλ.)

(b) The Sun supplies power of intensity 1400 W/m2 to the Earth. The nearest star is about 4

light years away. Assuming this star is similar to the Sun, about how many of its photons hit

your eye per second?

Solution. Before we continue, it’s important to note that for estimation questions, one should only

expect an answer to within an order of magnitude. Some teachers tweak their example calculations

until they give almost exactly the right answer. This makes them look brilliant, but it’s deceptive,

because then when the student tries to do the same, their results will be much further off. So to

combat this, in all solutions here, we’ve just presented our very first, simplest guesses. They can be

up to an order of magnitude off from the real numbers, so if your numbers are within two orders of

magnitude of ours, you’re fine!

(a) We can estimate a standard light bulb to have around 50 W of power. The power P = NE

where N is the number of photons emitted per second, and the wavelength of visible light is

from 400− 700 nm (we can use 500). Then

N =
Pλ

hc
≈ 1020 photons/s

(b) 1 AU is about 1.5× 1011 m. (If you forget, you can use something like GMS/r
2 = (2π/T )2r,

where T is one year and MS ≈ 2× 1030 kg). 1 light year is c× 1 year ≈ 9.5× 1015 m. Then

the intensity from the star is reduced by a factor of (1 AU/4 ly)2 due to the inverse square

law, so I ≈ 3.5× 10−7 W/m2. The radius of our eyes is about 1 cm, so the area is about 1
2πr

2

since our eyes aren’t that open. Then the number of photons that hit per second is Pλ/hc,

which gives N ≈ 108 photons/s.

[2] Problem 27. Estimate the radius of the largest asteroid you could jump off of, and never return.

Solution. The escape velocity is v =
√

2GM/R, and we will assume a uniform spherical asteroid

with density ρ. Rock is probably a few times denser than water, so ρ ≈ 3 × 103 kg/m3 and

M ≈ 4
3πρR

3. Humans can jump around half a meter, which determines v =
√

2gh. Thus

2gh =
2G

R

4

3
πρR3.

Since g ≈ π2 in SI units, this simplifies to

R ≈

√
3πh

4Gρ
≈ 2 km.

[4] Problem 28. Some questions about energy.

(a) Estimate the digestible energy content of a stick of butter. (A calorie is about 4000 J, and is

also the energy needed to raise the temperature of a kilogram of water by 1 K.)

(b) Estimate the rate at which your body burns energy when at rest.

(c) Estimate the rate at which a human being radiates energy. (The Stefan–Boltzmann law states

that the radiation power per unit area from a blackbody is σT 4, where σ = 5.7×10−8 W/m2K4.)

Is radiation a significant source of energy loss for a human being, or is it negligible?
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(d) A human being develops hypothermia, with their core body temperature dropping by 5 ◦F.

Neglecting any heat transfer with the environment, estimate the number of calories required

to raise their temperature back to normal.

Now let’s verify the energy content of the butter microscopically. This will be a very rough estimate,

so expect answers to be only within one or two orders of magnitude.

(e) A chemical bond typically involves two electrons, and a characteristic atomic separation

distance of one angstrom, r ∼ 10−10 m. Estimate the binding energy of one chemical bond.

(f) The fats in butter are digested by inputting energy to break the bonds in the molecules, then

harvesting energy by combining the atoms into CO2 and H2O, which have somewhat more

stable bonds.

Estimate the energy content of a kilogram of butter. How close is this to the true result?

Solution. (a) Recall the usual “2000 calories per day diet” you see on the nutrition facts for

food. Note that those calories are referring to kilocalories (∼ 4000 J). Eating a few sticks of

butter will probably make me feel quite full for a day (and disgusted), so a stick of butter

probably has around 500-1000 kcal of digestive energy content (let’s use 800, which is close

to the actual value). Then E = 800 kcal× 4000 J/kcal ≈ 3× 106 J.

(b) Again, we will use what we see on the nutrition facts: 2000 cal/day≈ 100 W. This energy is

used to maintain homeostasis in your body, and it eventually gets exhausted as heat.

(c) First we approximate the surface area of a human, then assume a spherical human that’s a

perfect blackbody. Our height is about 1.7 m, and our width is around 0.25 m and negligible

thickness. Then the surface area is around 2 ∗ 1.7 ∗ 0.25 ≈ 1 m2 (rounding up makes more

sense for thickness and limbs). Then using the Stefan–Boltzmann law, P = AσT 4. Humans

skin is on the order of 300 K, so P ≈ 500 W.

This is much too high, as it can’t possible be higher than (b). The main difference is that the

radiation output by the human body is almost completely cancelled by the radiation input by

the environment, which is at almost the same temperature (in absolute terms). For example, in

typical room-temperature conditions, the environment is at 70◦ F and human skin is at 90◦ F,

for a difference of about 10 K. So the power is smaller by a factor of 1− (290/300)4 = 0.13,

giving a reasonable 65 W. It’s still a significant contribution, but not unreasonably large. Of

course, in colder environments one can reduce this contribution by, e.g. wearing clothes.

(d) 5◦F is 10/9◦C ≈ 1◦C. Now we use Q = mcT , and since humans are mostly water, we’ll

approximate the specific heat to be the same as water. The mass of humans is usually around

60 kg. Since the ”food calorie” is a kilocalorie (amount of energy needed to raise 1 kg by 1◦

C), we need 60 food calories to raise our temperature back to normal.

(e) A basic estimate for the binding energy is

E ∼ e2

4πε0r
∼ 2× 10−18 J.
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As a check, this is about 10 eV, and the binding energy of hydrogen is about 13.6 eV (one of

those classic numbers you should remember), so this is in the right ballpark. Of course, the

energy is actually negative, even though electrons repel, because it’s due to how the electrons

are attracted to the nuclei. We can, however, very roughly estimate this negative energy using

the positive energy of repulsion e2/4πε0r because all energy scales in the problem should be

roughly similar.

Actually, in reality the answer should be about an order of magnitude lower, for two reasons.

The first is simply that atomic separations are a bit bigger, but this is cancelled by the fact

that the nuclei have charge Zi > 1. The main issue is that covalent bonds are a bit more

subtle.

Naively, you could say that a covalent bond is attractive because the electrons in one atom are

attracted to the nuclei of the other. But this is too naive, because at least parametrically, it’s

cancelled out by the repulsion of the nuclei with each other, and the repulsion of the electrons

with each other, as all four of these terms are of order ±e2/4πε0r. Covalent bonds are stable

because the electron orbitals can deform a bit, so that the negative contributions end up a

bit bigger than the positive ones. So e2/4πε0r isn’t really an estimate for the binding energy,

but for the sizes of terms which mostly cancel out to give the binding energy, which is why

the real answer is about 10 times smaller.

(f) Fats are mostly carbon. As a very rough estimate let’s say that the carbon atoms end up in

bonds that are twice as stable as before, so the energy released per carbon atom is on the

order of magnitude of what we found in part (e). Then

energy

kilogram
=

energy

C atom

C atoms

mole

(
kilograms

mole

)−1
∼ (2× 10−18 J)NA

(
12 g

mole

)−1
= 108 J/kg.

For comparison, the energy of one gram of fat is 9 calories, so the true answer is

(9)(4000)(1000)
J

kg
= 3.6× 107 J/kg

which is not too far off!

[2] Problem 29 (Povey). When human beings lose weight, most of it is by exhalation of carbon.

About 20% of the air in the atmosphere is oxygen. When we breathe in and then out, about 25%

of the oxygen is converted to carbon dioxide.

(a) Estimate the mass of air contained in a single breath.

(b) Estimate the amount of weight we lose every day by breathing alone.

Solution. (a) If I don’t take a deep breath, I can barely blow up a crushed plastic water bottle

(holds half a liter of volume), so I would estimate the volume in a single breath to be around

0.5 L. From chemistry class (or ideal gas law: n = PV/RT ), we know that mole of gas takes

up 22.4 liters of volume at STP (our body temperature, 310 K isn’t that much more than 273

K but we can just use 22.4×310/273 ≈ 25 L). Most of the air is nitrogen (N2) with molecular

mass 28 g/mol (oxygen, O2, is 32 which is pretty close). Then one breath should have a mass

of 0.5 L/25 L/mol× 28 g/mol ≈ 0.6 g.
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(b) By counting, we can estimate humans to breathe around 10 − 15 times a minute (let’s use

12.5), so around 20,000 breaths in a day. In each breath, 25% of the oxygen (which is 20%

of the air) will be around 5% of the air to converted from oxygen to carbon dioxide. Carbon

dioxide (CO2) has a molecular mass of 48 g/mol, and oxygen is 32. Thus we lose a proportion

of (48/32− 1)× 0.05 = 0.5 = 0.025 of the mass of the air we breathe in every day, which is

about 0.3 kg. Most of the mass of the food we eat leaves this way.

[2] Problem 30 (Insight). How long a line can you write with a pencil?

Solution. Graphene, a layer of carbons arranged in a hexagonal way, famously can be made from

using scotch tape to extract a few layers of graphite from pencil markings. It’ll take plenty of tries

to erase pencil from paper with tape probably (but progress is definitely noticeable), so we can

estimate there to be around 100 layers of the hexagonal carbon from graphite.

We will assume that the line is drawn with the pencil perfectly vertical and the lead not sharpened.

The diameter of the lead is around 2 mm, and the mass of a pencil should be around 2-10 grams,

so the mass of the lead is on the order of 1 g. Assuming that the lead is almost all made out of

carbon, we can estimate how many carbon atoms it has, and the surface density of carbon atoms.

The carbons are spread apart in a hexagonal fashion with a characteristic distance of r ≈ 10−10

m, and the centers of 3 adjacent hexagons will have a carbon atom at its center, giving a spacing

of 1 carbon atom every r2 square meters. There should be

6.022× 1023atoms/mole× 1 g× 1

12 g/mol
≈ 5× 1022 atoms of C

Thus that gives around 500 m2 of a single layer of carbon, so around 5 m2 of lead usage. The line

will be approximately a rectangle with area d`, where d is the diameter of 2 mm.

Thus the pencil line should be around 2.5 km long. One can find other estimates of the order

50 km, i.e. a spread of an order of magnitude. The precise result within this order of magnitude of

course depends on the details of the pencil.

5 Experimental Technique

At both the national and international Olympiad level, it’s important to have practical know-how

in order to make experiments work. It’s very hard to train this with only theoretical problems.

However, the Australian Physics Olympiad has some useful problems in this direction, since it has

a strong emphasis on real-world physics.

[3] Problem 31. �̂10 AuPhO 2010, problem 12.

Solution. See the official solutions here.

[3] Problem 32. �̂10 AuPhO 2012, problem 14.

Solution. See the official solutions here.

[3] Problem 33. �Y10 AuPhO 2016, problem 14. You will need to print out pages 8 and 9 of the

answer sheets.

Solution. See the official solutions here.

You can look at other AuPhO questions for further practice, but as you can see here, many AuPhO

questions are confusing, misleading, or even wrong, which is an unfortunate consequence of the

innovative nature of the contest. I’ll only assign you the best ones.
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https://knzhou.github.io/
https://www.asi.edu.au/wp-content/uploads/2015/03/2010_Physics_NQE_paper.pdf
https://www.asi.edu.au/wp-content/uploads/2015/03/2010_Physiscs_solutions.pdf
https://www.asi.edu.au/wp-content/uploads/2015/03/2012-ASOE-Physics-Questions.pdf
https://www.asi.edu.au/wp-content/uploads/2016/10/ASOEsolns2012.pdf
https://www.asi.edu.au/wp-content/uploads/2016/10/2016-Physics-Paper.pdf
https://www.asi.edu.au/wp-content/uploads/2016/10/2016-Physics-Answer-Booklet.pdf
https://www.asi.edu.au/wp-content/uploads/2016/10/Physics-2016-solutions.pdf
https://www.physicsforums.com/insights/corrections-to-the-australian-physics-olympiad-questions-and-solutions/
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